N 3 S REFERENCE

CONTENTS

DESCRIPTION

LEGEND (SOIL & ROCK)

CROSS SECTION(S) BORE LOG(S)

SOIL TEST RESULTS

SITE PHOTOGRAPH(S)

TITLE SHEET

SITE PLAN

PROFILE(S)

SHEET NO.

5-6

7-10

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY WILKES

PROJECT DESCRIPTION <u>PEDESTRIAN</u> BRIDGE OVER US 421 AT NORTH WILKESBORO SPEEDWAY

STATE PROJECT REPERENCE NO. 51358

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1919 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (INP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS NIDICATED IN THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE TOTAL WITH THE ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO PERFORM INDEPENDENT SUBSURFACE INVESTIGATIONS AND MAKE INTERPRETATIONS AS NECESSARY TO CONFIRM CONDITIONS ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

C. BRAKE, G.I.T A. STURCHIO J. SALAS INVESTIGATED BY $F \otimes R$, Inc.DRAWN BY _T.T. WALKER

CHECKED BY __P. ALTON, P.E. SUBMITTED BY <u>C. WANG</u>, P.E.

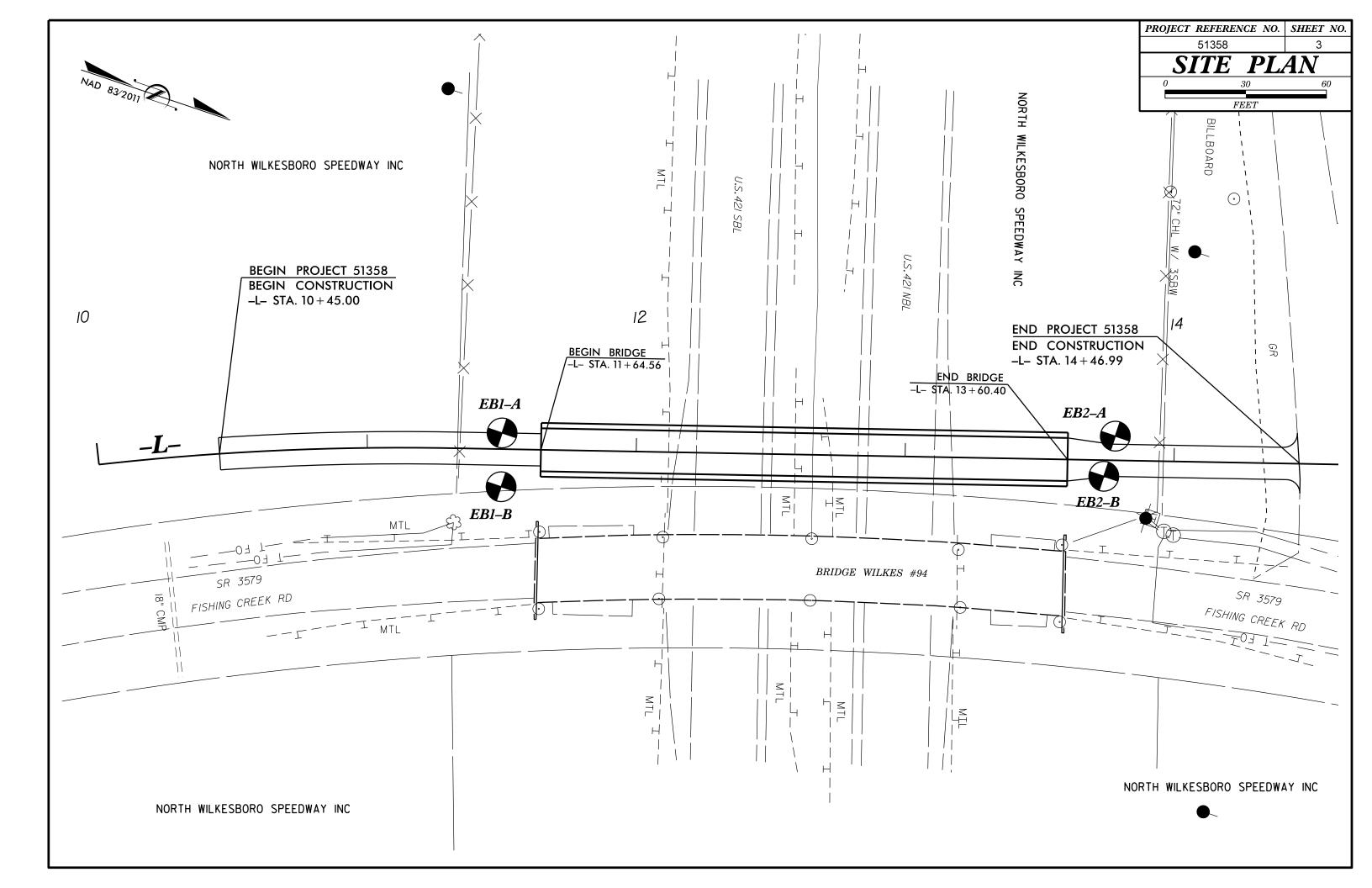
Prepared in the Office of:

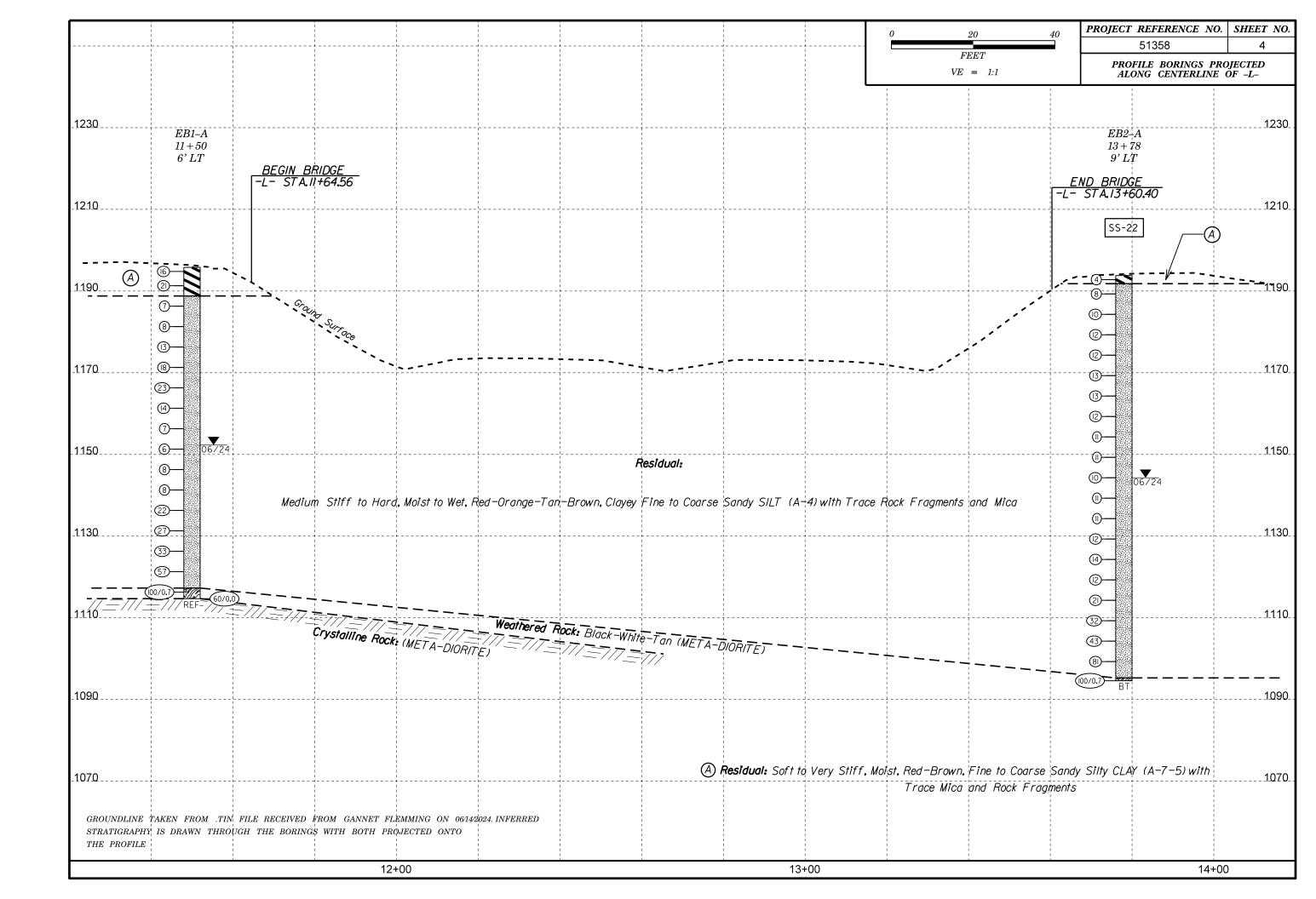
Engineering Stability Since 1881

310 Hubert Street Raleigh, North Carolina 27603-2302 License No. F-0266 Bus: 919.828.3441 Fax: 919.828.5751

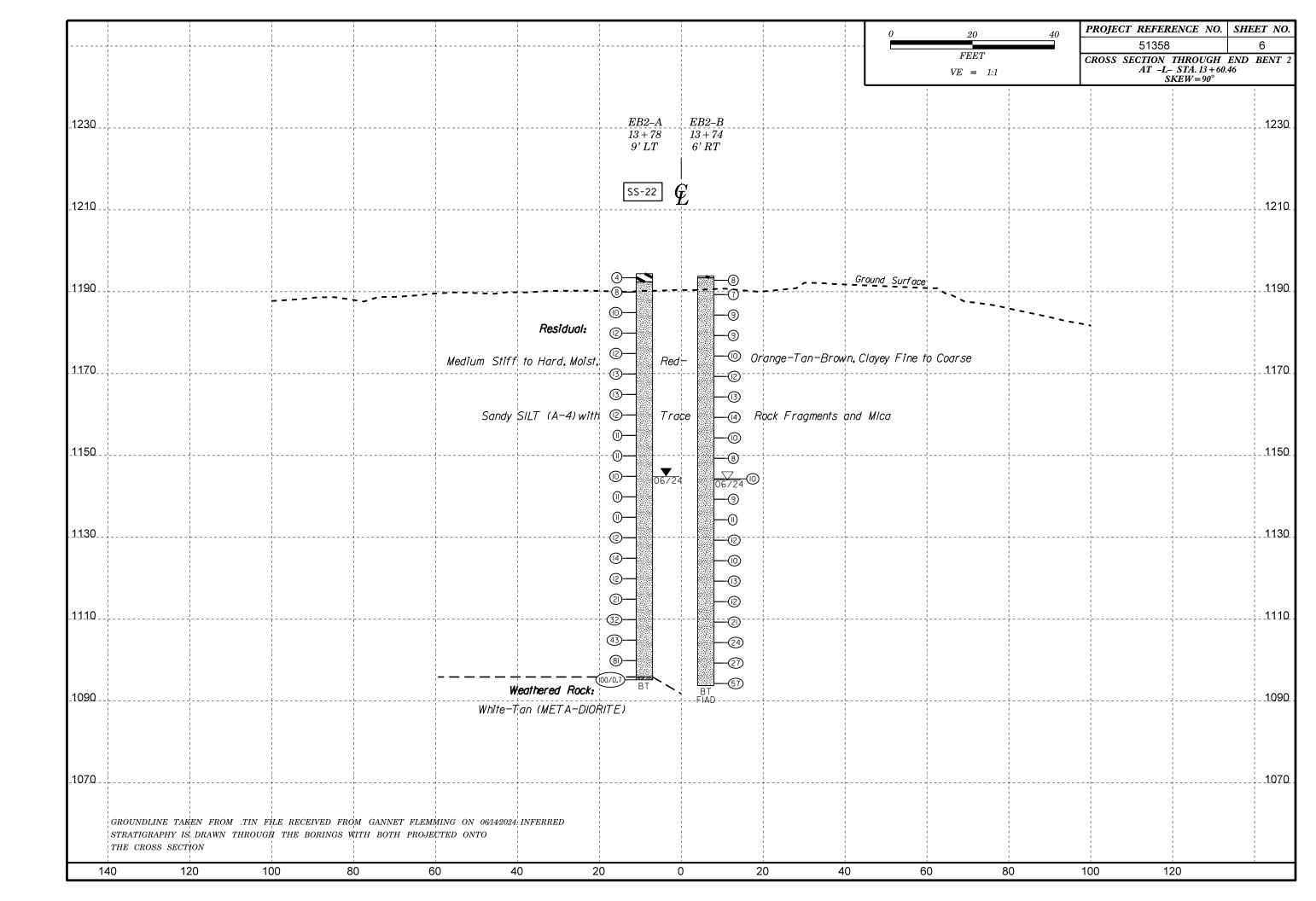
SIGNATURE

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

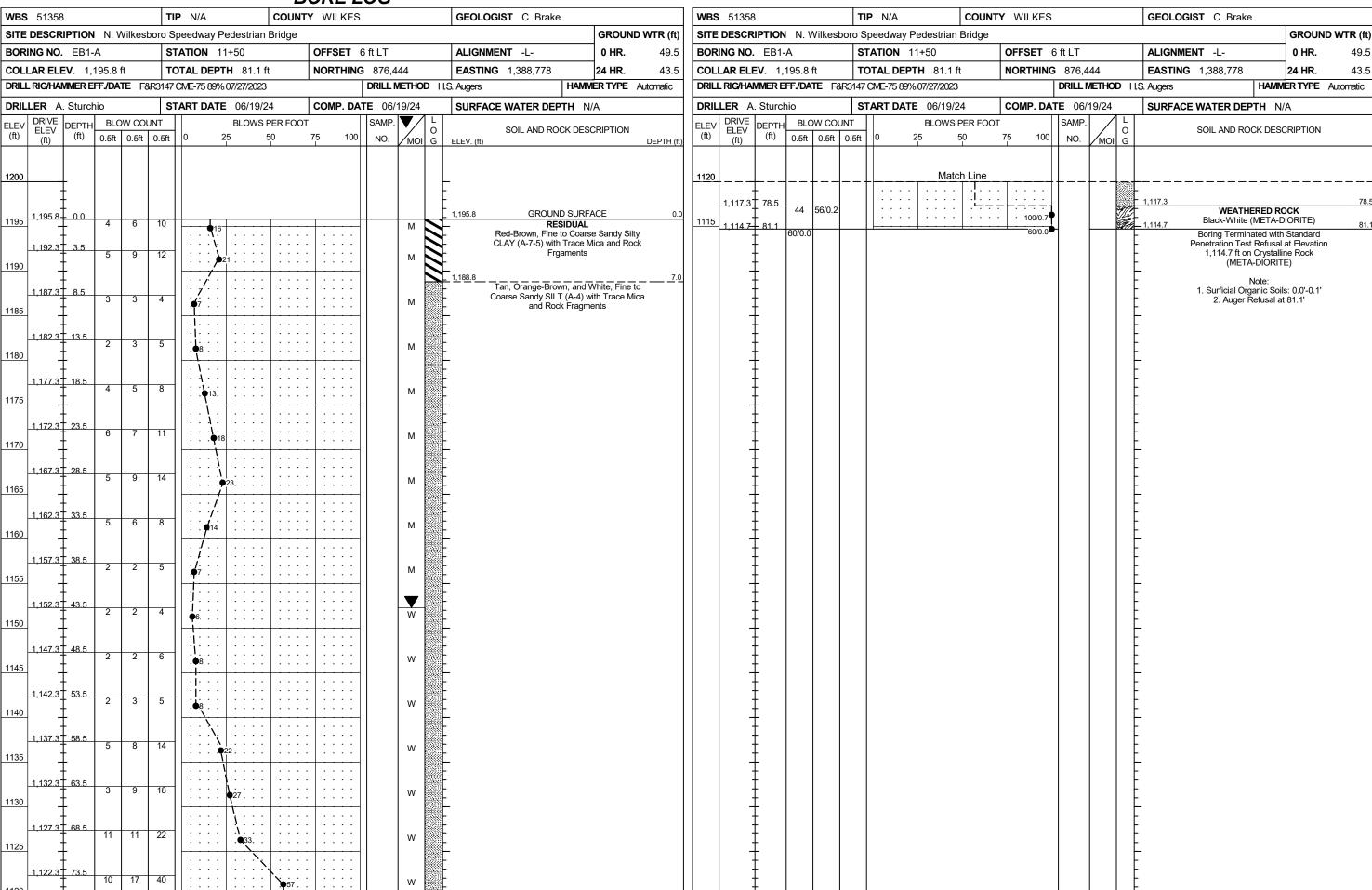

PROJECT REFERENCE NO.	SHEET NO.
51358	2

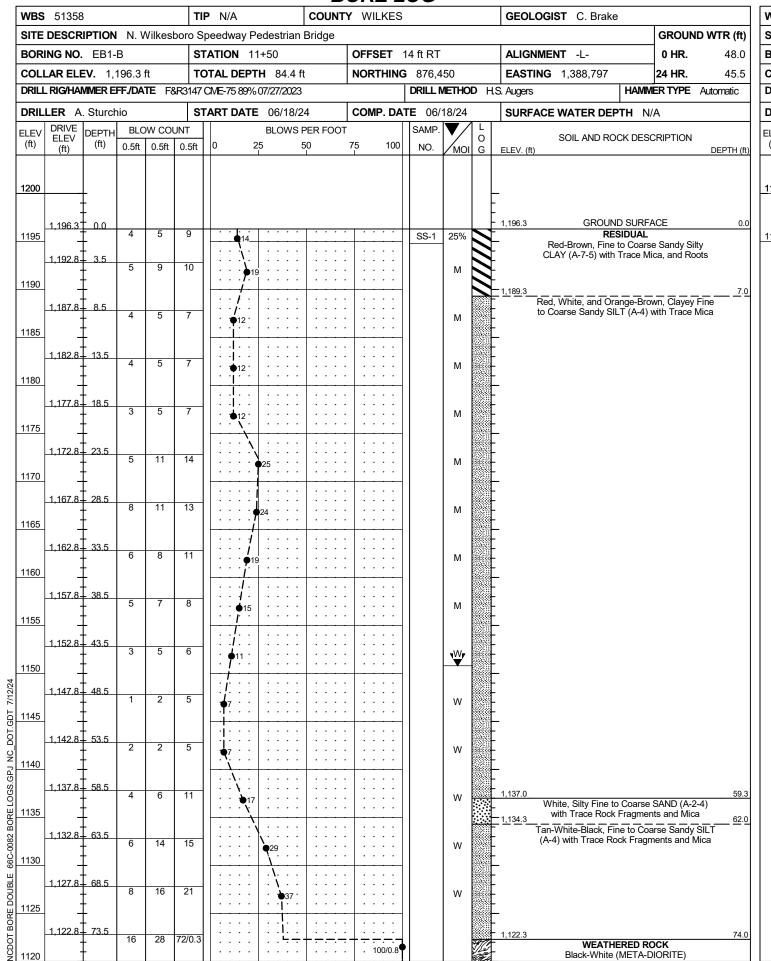

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

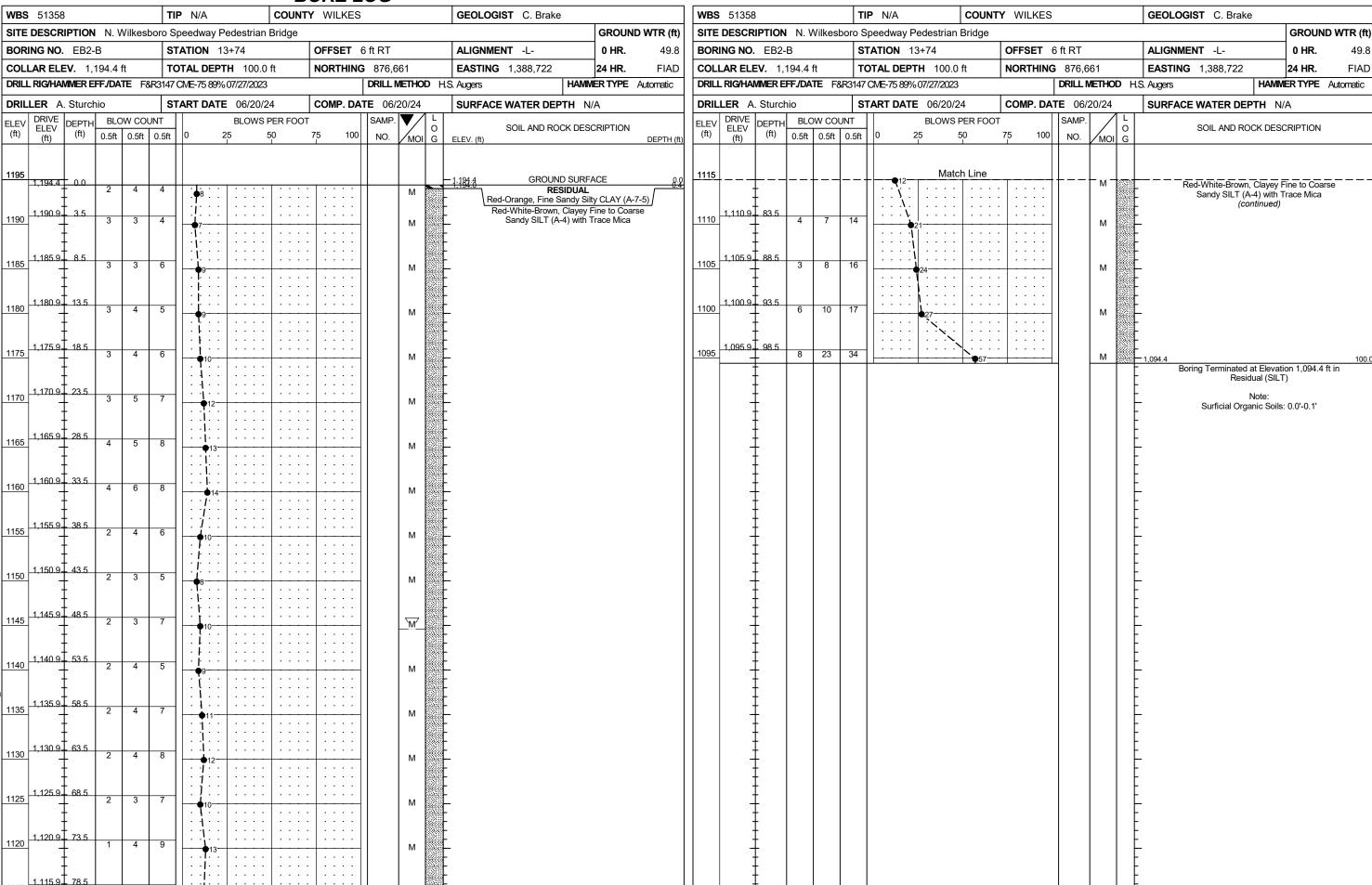

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS

SOIL DESCRIPTION	GRADATION	ROCK DESCRIPTION	TERMS AND DEFINITIONS
SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM D1586). SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, VERY STIFF, GRAY, SILTY CLAY, MOST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6 SOIL LEGEND AND AASHTO CLASSIFICATION	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. ANGULARITY OF GRAINS THE ANGULARITY OR ROUNDMESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.	HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PERETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN ØLFOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL. THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK. ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > ROCK (WR)	ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. ADUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT
GENERAL CLASS. GRANULAR MATERIALS (≤ 35% PASSING *200) SILT-CLAY MATERIALS (> 35% PASSING *200) ORGANIC MATERIALS GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 CLASS. A-1-0 A-1-b A-2-4 A-2-5 A-2-6 A-7-7 A-7-7	MINERALOGICAL COMPOSITION MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE. COMPRESSIBILITY	CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, CNEISS, GABBRO, SCHIST, ETC. NON-CRYSTALLINE ROCK (NCR) NON-CRYSTALLINE ROCK (NCR) PROCK TYPE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YELD SPT REFUSAL IF TESTED.	WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND SURFACE. <u>CALCAREOUS (CALC.)</u> - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. <u>COLLUVIUM</u> - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE.
SYMBOL	SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50 PERCENTAGE OF MATERIAL ORGANIC MATERIAL ORGANIC MATERIAL ORGANIC MATERIAL ORGANIC MATERIAL	COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SEDIMENTARY ROCK SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED (CP) SHELL BEDS, ETC. WEATHERING	CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT ROCKS OR CUTS MASSIVE ROCK.
MATERIAL PASSING *40 LL 48 MX 41 MN 48 MX 41 MN 48 MX 41 MN 48 MX 41 MN 48 MX 11 MN 11 MN LITTLE OR PI 6 MX NP 18 MX 18 MX 11 MN 11 MN 10 MX 18 MX 11 MN 11 MN MODERATE ORGANIC	TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE	FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER HAMMER IF CRYSTALLINE. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE.	DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL. DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH.
USUAL TYPES STONE FRAGS, OF MAJOR SAND SAND GRAVEL AND SAND SOILS SOILS GRAVEL AND SAND GRAVEL AND SAND SOILS SOILS GRAVEL AND SAND GRAVEL AND SAND SOILS SOILS	GROUND WATER WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING STATIC WATER LEVEL AFTER 24 HOURS PERCHED WATER, SATURATED ZONE, OR WATER BEARING STRATA	SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) I INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS	FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.
AS SUBGRADE EXCELLENT TO GOOD FAIR TO POUR POOR POUR DISJOITABLE PLOF A-7-5 SUBGROUP IS < LL - 30 ; PLOF A-7-6 SUBGROUP IS > LL - 30 CONSISTENCY OR DENSENESS COMBACTNIESS OR RANGE OF STANDARD RANGE OF UNCONFINED	SPRING OR SEEP MISCELLANEOUS SYMBOLS	DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED WITH FRESH ROCK. MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLODIST'S PICK. ROCK GIVES 'CLUNK' SOUND WHEN STRUCK. IF TESTED, WOULD YIELD SPT REFUSAL	FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM, FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD. JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED.
CONSISTENCY	ROADWAY EMBANKMENT (RE) POP NOTE OF ROCK STRUCTURES SOIL SYMBOL ARTIFICIAL FILL (AF) OTHER AUGER POPING CONE PENETROMETER	SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF	LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT. LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE.
(NON-COHESIVE) UENSE 30 10 50 VERY DENSE > 50 VERY SOFT < 2 < 0.25 GENERALLY SOFT 2 TO 4 0.25 TO 0.5 SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0	ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT INFERRED SOIL BOUNDARY OCORE BORING SOUNDING ROD MONITORING WELL WITH CORE	VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK (V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. IF TESTED, WOULD YIELD SPT. N VALUES < 100 BPF COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND	PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVIOUS STRATUM. RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK QUALITY DESIGNATION (ROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF
MATERIAL STIFF 8 TO 15 1 TO 2 (COHESIVE) VERY STIFF 15 TO 30 2 TO 4 HARD > 30 > 4 TEXTURE OR GRAIN SIZE	RECOMMENDATION SYMBOLS	SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS ALSO AN EXAMPLE. ROCK HARDNESS	ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT
U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 BOULDER COBBLE GRAVEL COARSE SAND SAND SAND SAND SILT CLAY	UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL	VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK. GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE	ROCK. SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT
(BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.) GRAIN MM 305 75 2.0 0.25 0.05 0.005 SIZE IN. 12 3 SOIL MOISTURE - CORRELATION OF TERMS	ABBREVIATIONS AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICAGEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT CPT - CONE PENETRATION TEST NP - NON PLASTIC 7_6 - DRY UNIT WEIGHT	HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK, HAND SPECIMENS CAN BE DETACHED BY MODERATE BLOWS. MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE POINT OF A GEOLOGIST'S PICK.	OR SLIP PLANE. STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB. HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL TO OR LESS THAN 0.1 FOOT PER 60 BLOWS.
SOIL MOISTURE SCALE FIELD MOISTURE DESCRIPTION GUIDE FOR FIELD MOISTURE DESCRIPTION - SATURATED - USUALLY LIQUID; VERY WET, USUALLY FROM BELOW THE GROUND WATER TABLE LIQUID LIMIT	CSE COARSE	SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES I INCH SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY	STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE.
PLASTIC RANCE - WET - (W) SEMISOLID; REQUIRES DRYING TO ATTAIN OPTIMUM MOISTURE	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS w - MOISTURE CONTENT CBR - CALIFORNIA BEARING HI HIGHLY V - VERY RATIO	FINGERNAIL. FRACTURE SPACING TERM SPACING TERM THICKNESS	TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. BENCH MARK: N/A
OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE SL SHRINKAGE LIMIT - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE	DRILL UNITS: ORILL UNITS: ORICH STATE ORI	VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET CLOSE 0.16 TO 1 FOOT VERY THINLY BEDDED 0.03 - 0.16 FEET VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET	ELEVATION: N/A FEET NOTES: BORING ELEVATIONS OBTAINED FROM 5i358_ls_tin_240223.tin RECEIVED FROM GANNETT FLEMING 06_I4_2024
PLASTICITY	S*HOLLOW ADJERS	INDURATION FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. RUBBING WITH FINCER FREES NUMEROUS GRAINS; GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER.	
COLOR DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY), MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE.	X CME-75 TRICONE TRUNGCARB. SOUNDING ROD VANE SHEAR TEST	INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER. EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS.	DATE: 8-15-14





49.5


43.5

WBS	51358				Т	ΓIP	N/A		COUNT	Y W	ILKES					GEOLOGIST C. Brake							
SITE	DESCRI	PTION	I N. V	Vilkes	boro	Spe	eedway Pede	strian	Bridge									GROUN	JND WTR (ft				
3OR	ING NO.	EB1-	В		S	STATION 11+50				OFF	OFFSET 14 ft RT					ALIGNMENT -L-		0 HR.		48.0			
COLI	LAR ELE	V. 1,	196.3	ft	Т	TOTAL DEPTH 84.4 ft				NOR	THING	8	376,4	50		EASTING 1,388,797		24 HR.		45.5			
DRILL	RIG/HAN	IMER E	FF./DA	TE F	&R3147	7 CN	ME-75 89% 07/2	7/2023				DF	RILL N	IETHO	D H.	S. Augers	HAMM	ER TYPE	Autom	natic			
DRIL	LER A.	Sturch	nio		S	STA	ART DATE 0	6/18/2	4	CON	IP. DA	ΤE	06/	8/24		SURFACE WATER DEP	TH N/	Ά					
LEV	DRIVE	DEPTH	BLC	w co	UNT		BL	OWS F	PER FOO	T		S	AMP.		L O	SOIL AND ROO	N DESC	PDIDTION					
(ft)	ELEV (ft)	(ft)	0.5ft	0.5ft	0.5ft	: (0 25	5	50	75 	100	L	NO.	MOI		SOIL AND NOC	JN DLGC	DIVIE LION					
120			<u> </u> _	L		\prod		Matc	h Line			⊥.											
	1,117.8	- 78.5									: : :					WEATHE Black-White (META			ıed)				
	1		16	22	78/0.4	4					 100/0.9	.											
115	1	- -				\parallel										_							
	1,112.8	83.5	53	47/0.4		Ш						\perp				. 1,111.9				84.4			
	1	-			1						100/0.9					. Boring Terminated a Weathered Rock	t Elevati ‹ (META	on 1,111.9 DIORITE)	ft in				
	1	-													E		ote:						
	1															Surficial Orgar	nic Soils:	0.0'-0.1'					
	1	-													E	_							
	1																						
	1	<u>.</u>														=							
	1																						
	1														E								
	1	-													E	_							
	$\frac{1}{2}$	-																					
	1														E	_							
	1	-													E								
	$oxed{1}$																						
	1	-													F	· =							
	Ŧ														F	•							
	Ŧ														F	•							
	1	-													F	- ·							
	1	•													F	•							
	1	-													F	-							
	1	•													ŀ	•							
	1														F	•							
	1	-														-							
	‡	•														•							
		-														· =							
	‡	- -														•							
		•																					
		-														-							
	‡	•														•							
		-														· -							
		<u>-</u>													F	-							
		-													F	.							
																•							
		-														- ·							
		•			1											•							

		BORE LOG					
WBS 51358	TIP N/A COUN	NTY WILKES GEO		WBS 51358	TIP N/A COUNTY WILKES	GEOLOGIST C. Brake	
SITE DESCRIPTION N. Wilke	sboro Speedway Pedestrian Bridge		GROUND WTR (ft)	SITE DESCRIPTION N. Wilkesbor		GROUND	WTR (ft)
BORING NO. EB2-A	STATION 13+78	OFFSET 9 ft LT ALIG	NMENT -L- 0 HR. 62.5	BORING NO. EB2-A	STATION 13+78 OFFSET 91	ft LT ALIGNMENT -L- 0 HR.	62.5
COLLAR ELEV. 1,193.8 ft	TOTAL DEPTH 99.2 ft	NORTHING 876,661 EAST	FING 1,388,707 24 HR. 49.5	COLLAR ELEV. 1,193.8 ft	TOTAL DEPTH 99.2 ft NORTHING		49.5
DRILL RIG/HAMMER EFF./DATE	F&R3147 CME-75 89% 07/27/2023	DRILL METHOD H.S. Augers	HAMMER TYPE Automatic	DRILL RIG/HAMMER EFF/DATE F&R3	8147 CME-75 89% 07/27/2023	DRILL METHOD H.S. Augers HAMMER TYPE A	Automatic
DRILLER A. Sturchio	START DATE 06/19/24	COMP. DATE 06/19/24 SURF	FACE WATER DEPTH N/A	DRILLER A. Sturchio	START DATE 06/19/24 COMP. DATE	SURFACE WATER DEPTH N/A	
ELEV DRIVE DEPTH BLOW CO.5ft 0.5ft 0.5ft		OT SAMP. V L O NO. MOI G ELEV. (f	SOIL AND ROCK DESCRIPTION	DRIVE DEPTH BLOW COUNTED CHARLES CHA	I	SAMP. L O SOIL AND ROCK DESCRIPTION NO. MOI G	
1195			GROUND SURFACE 0.0	11115	Match Line	M Red-Brown and Orange-Brown-Tan, Claye	
	2	SS-22 2070 1,191.8	, :: :: :: : : : : : : : : : : : :	‡		Fine to Coarse Sandy SILT (A-4) with Trac Rock Fragments and Mica (continued)	ce
1190 1,190.3 3.5 3 3		М	Red-Brown and Orange-Brown-Tan, Clayey Fine to Coarse Sandy SILT (A-4) with Trace	1110 1,110.3 83.5 8 12 2	20 •32	м	
1185 1,185.3 8.5			Rock Fragments and Mica	1105 1,105.3 88.5			
3 5	5 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8 16 2	27	M	
1180 1,180.3 13.5 4 5	7			1100 1,100.3 93.5 17 33 4	18		
	/ . • 12.				**	M C	
1175 1,175.3 18.5 3 5	7 . •12			1095 1,095.3 98.5 63 37/0.2	100/0.7	1,095.3 WEATHERED ROCK	98.5
						White-Tan (META-DIORITE) Boring Terminated at Elevation 1,094.6 ft i Weathered Rock (META-DIORITE)	in
1170 1,170.3 23.5 4 5	\pi13.	M				Note:	
1165 1,165.3 28.5						Surficial Organic Soils: 0.0'-1.0'	
1105 ,1023 20.3 4 5	8 • 13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
1160 1,160.3 33.5 2 5	7						
	' . . 12.						
1155 1,155.3 38.5 3 4	7 . •11						
1150 1,150.3 43.5	7 . •11						
1145 1,145.3 48.5							
1145 ,1463 400 2 4	6 . •10						
1140 1,140.3 53.5	7						
	/ . • 11						
1135 1,135.3 58.5		·· ···					
1130 1,130.3 63.5	. 🖣 12 .	М					
1125 1,125.3 68.5							
1125 1,125.3 06.5 3 5	9 • 14	M					
1120 1,120.3 73.5							
3 5		· · · · · ·					
1,115.3 78.5							

PROJECT REFERENCE NO. SHEET NO. 51358 11

County: Wilkes

Description: N. Wilkesboro Speedway Pedestrian Bridge

	SOIL TEST RESULTS															
SAMPLE	SAMPLE -L- STATION LOCATION OFFSET * DEPTH AASHTO L					, ,	P.I.	% BY WEIGHT			% PASSING (SIEVES)			%	%	
NO.	-L- STATION	LOCATION	OFFSET	INTERVAL (FT)	CLASS.	L.L.	P.I.	C. SAND	F. SAND	SILT	CLAY	10	40	200	MOISTURE	ORGANIC
SS-1	11+50	EB1-B	14' RT	0.1-1.5	A-7-5 (26)	71	29	10.4	16.9	9.3	63.4	100.0	94.4	76.2	25.4	NT
SS-22	13+78	EB2-A	9' LT	0.1-1.5	A-7-5 (21)	66	24	12.0	18.6	11.5	57.9	100.0	94.7	73.1	29.0	NT

NP = Not Plastic			
NT = Not Tested	H. Sanchez	C.Wang, P.E.	
ND = Not Determined	Lab Manager, Certification No. 101-04-0603	Soils Engineer	

North Wilkesboro Speedway Pedestrian Bridge SITE PHOTOGRAPHS

Photograph No. 1: View from south look at End Bent 1

Photograph No. 2: View from north looking at End Bent 2